- http://www.juergenbrauer.org/teaching/deep_learning/slides_ws1617_deep_learning_brauer.pdf
- https://github.com/juebrauer/Book_Introduction_to_Deep_Learning
- http://www.wildml.com/deep-learning-glossary/
- Biologische Neuronen und technische Neuronenmodelle
- Convolutional Neural Networks (CNN)
- R-CNN Modell:
 "Rich feature hierarchies for accurate object detection and semantic segmentation"
 Paper
- Fast R-CNN Modell:
 "Fast R-CNN"
 Paper
- Capsule Networks
 "Dynamic Routing Between Capsules"
 Paper
- Deep Learning Bibliotheken
 Crashkurs Deep Learning Bibliotheken: TensorFlow und Keras
- Faster R-CNN Modell:
 "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"
 Paper
- Reservoir Computing: Echo State Networks
- Einführung/Crash-Kurs: GPU Programmierung
- Yolo und Yolo9000 Modell:
 "You Only Look Once: Unified, Real-Time Object Detection"
 Paper1
 "YOLO9000: Better, Faster, Stronger"
 Paper2
- Reservoir Computing: Liquid State Machines
- ILSVRC Benchmark
 Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Wie funktioniert der Wettbewerb?
 Link
- SSD Modell:
 "Single Shot MultiBox Detector"
 Paper
- Generative Adversarial Networks
- Deep Learning Bibliotheken
 Crashkurs Deep Learning Bibliotheken: Caffe/Caffe2 sowie Torch/PyTorch
- Mask R-CNN Modell:
 "Mask R-CNN"
 Paper
- Neuromorphische Chips
 
